

Templating Custom Node
Introduction

Custom Nodes are a new feature of Square 9’s GlobalCapture and GlobalAction and are available

from version 2.3.x. Custom Nodes are seen as a replacement for Call Assembly nodes and extend the

functionality of GlobalCapture and GlobalAction but in way that is more familiar to workflow

designers than the Call Assembly nodes.

The Templating Custom Node utilises a powerful template scripting language called Scriban to

produce text based files from within your workflows.

Pre-Requisites

The following items are required:

• GlobalCapture or GlobalAction Version 2.3 or newer.

• Templating Custom Node - e8142d89-f608-431c-8205-192053397386.s9n.

• A license file.

Installation

To install the Templating Custom Node:

1. Log into GlobalCapture with an account that can administer GlobalCapture.

2. Navigate to Mange >> Nodes.

3. Click the Menu button in the bottom right corner of the interface and choose

Upload S9N File (the middle option).

4. Browse for the Templating Custom Node Package - e8142d89-f608-431c-8205-

192053397386.s9n and click open to install.

Default Configuration

To configure the default properties for the Templating Custom Node, click on the three-dot menu

and select edit and the node’s properties will be displayed.

There are two types of default configuration available:

1. If you click on Modal Preview and enter any values, these properties will then be pre-

populated when the node is added to a workflow.

2. If you click on Config you are presented with a JSON view of the node’s configuration. This

contains the properties that can be on the node’s config panel as well as properties you only

need to set once per install, for example, the path to the license file.

Any properties configured here will override the properties set on the node’s config panel,

configuring all nodes on all workflows to use this value. To remove an override, edit the

property’s value and set it to null.

If you need assistance on how to edit a JSON file please contact support.

Once you have completed configuring any properties, click on save

Licensing

The Templating Custom Node requires a license to function. If it is added to a workflow without a

license being present the workflow will be stopped and remain in an error state. Please contact sales

to enquire about pricing and obtaining a license.

Once you have obtained a license file, save it somewhere safe, it also needs to be saved in a location

that the login user for the GlobalCapture or GlobalAction Engine service(s) has access to. Next you

need to configure the node’s default config to point to this file by editing the value for the

licenseFilePath property.

Note: As you can see in the sample value provided, any back slashes need to be escaped for the

JSON to be valid, for example: "C:\\Node License File\\app.license"

Once you have completed configuring the license file path, click on save.

Workflow Configuration

The Templating Custom Node is used like any of the built-in nodes in the workflow designer, drag it

from the node toolbox onto the designer’s canvas, configure the properties and link it up as is

appropriate for your workflow.

Configure the Templating Custom Node

➢ Header Template File Path

The path to text file containing a header template. The header template is optional and will

be inserted at the start of any new file created.

➢ Body Template File Path

The path to a text file containing the body template.

➢ Output Directory Path

The directory to write the output file to.

➢ Output File Name

The name of the output file.

➢ Append To Existing

o If selected

The output file will be created if it does not exist and appended to if it does exist.

o If not selected

The output file will be created if it does not exist, and an incremental file name will be

assigned if it does exist.

Templates

Scriban templates are extremely flexible and can be a mixture of fixed text and variable data from

the workflow’s process fields. The documentation for Scriban can be found here.

It is possible to access process field data by surrounding a reference to them in {{ moustache

notation }}. When the output text is rendered, the variable reference will be replaced with the value

from the field. The fields references can be specified in a long form or short form.

https://github.com/scriban/scriban/blob/master/doc/language.md

 Long Form Short Form

Single Value Fields {{ single_value_fields["FIELD NAME"] }} {{ s["FIELD NAME"] }}

Multi Value Fields {{ multi_value_fields["FIELD NAME"] }} {{ m["FIELD NAME"] }}

Table Fields {{ table_value_fields["TABLE NAME"] }} {{ t["TABLE NAME"] }}

Examples

The examples have all been designed to work with the default data set found in our Template Tester utility. The Template tester allows you to test your

templates and see what the output looks like without having to put a process through GlobalCapture or GlobalAction. You can copy these examples into the

Template Tester to play around and become more familiar.

 Template Output

Access a single
value using long
form

Invoice Number is : {{ single_value_fields["Invoice Number"] }} Invoice number is : I-1001

Access three single
values using short
form

{{ s["Net"] }},{{ s["VAT"] }},{{ s["Total"] }} 800,200,1000

Loop through all
single values and
print their index,
key and value

{{ for sv in s }}

[{{ for.index }}] {{ sv .key }} : {{ sv .value }}

{{ end }}

[0] Invoice Number : I-1001

[1] Invoice Date : 2022-06-10T12:37:57.6231039Z

[2] Supplier Name : Bob's Bits

[3] Net : 800

[4] VAT : 200

[5] Total : 1000

Modifying single
values, performing
some maths, and
adding comments

Invoice Number : {{ s["Invoice Number"] | string.replace("-", ":") }} {{

replace text }}

Invoice Date : {{ date.parse s["Invoice Date"] | date.to_string "%g" }} {{

convert date }}

Invoice Number : I:1001

Invoice Date : 10 Jun 2022

Supplier Name : BOB'S BITS

Net : 800

Supplier Name : {{ s["Supplier Name"] | string.upcase }} {{

change case}}

Net : {{ s["Net"] }}

VAT : {{ s["VAT"] }}

Total : {{ s["Total"] }}

Checked : {{ (s["Net"] | string.to_float) + (s["VAT"] | string.to_float) ==

(s["Total"] | string.to_float) }} {{ # convert to number and do some maths

then a comparison}}

VAT : 200

Total : 1000

Checked : true

Access the second
value of a multi
value

{{ m["Delivery Note Numbers"][1] }} D-2002

Loop through all
values in a multi
value and remove
extra newlines

{{~ for entry in m["Delivery Note Numbers"] ~}}

{{ entry }}

{{~ end ~}}

D-2001

D-2002

D-2003

Check two multi
values are of equal
size then join them
in a CSV

{{~ if m["Delivery Note Numbers"].size != m["Purchase Order Numbers"].size

~}}

Different Sizes

{{~ else ~}}

{{~ for entry in m["Delivery Note Numbers"] ~}}

{{ entry }},{{ m["Purchase Order Numbers"][for.index] }}

{{~ end ~}}

{{~ end ~}}

D-2001,P-3001

D-2002,P-3002

D-2003,P-3003

Create a CSV from
a table field

Description,VAT Code,Quantity,Unit Price,Line Total,Line Net

{{~ for row in t["Line Items"] ~}}

{{ row["Description"] }},{{ row["VAT Code"] }},{{ row["Quantity"] }},{{

row["Unit Price"] }},{{ row["Line Total"] }},

{{~ end ~}}

Description,VAT Code,Quantity,Unit Price,Line Total,Line Net

Brazil Nuts,A,100,1.10,110.00,

Hazelnuts,A,200,2.45,490.00,

Peanuts,B,300,5.10,1530.00,

Pistachio Nuts,C,400,0.90,360.00,

Create a CSV from
a table field and
use a function to
look up the
percentage of VAT
from another table
field
then calculate the
NET value

Description,VAT Code,Quantity,Unit Price,Line Total,Line Net,VAT

{{~ func getNet(rate, total) ~}}

{{~ for row in t["VAT Rates"] ~}}

{{~ if row["VAT Code"] == rate ~}}

{{~ (total - (((row["VAT Rate"] | string.to_float) / 100) * total))

~}},{{~ (((row["VAT Rate"] | string.to_float) / 100) * total) ~}}

{{~ end ~}}

{{~ end ~}}

{{~ end ~}}

{{~ for row in t["Line Items"] ~}}

{{ row["Description"] }},{{ row["VAT Code"] }},{{ row["Quantity"] }},{{

row["Unit Price"] }},{{ row["Line Total"] }},{{ getNet row["VAT Code"] (

row["Line Total"] | string.to_float) }}

{{~ end ~}}

Description,VAT Code,Quantity,Unit Price,Line Total,Line Net,VAT

Brazil Nuts,A,100,1.10,110.00,110,0

Hazelnuts,A,200,2.45,490.00,490,0

Peanuts,B,300,5.10,1530.00,1377,153

Pistachio Nuts,C,400,0.90,360.00,288,72

Contacts

Sales and licensing enquiries to: sales@selectec.com

Support enquiries to: support@selectec.com

Acknowledgements

Selectec Custom Nodes are made possible by open-source software. The following open-source

software is distributed and is provided under other licences.

• Custom Workflow Nodes

https://github.com/Square9Softworks/custom-workflow-nodes

• Nett

https://github.com/paiden/Nett

• BouncyCastle

http://www.bouncycastle.org/csharp/

• Newtonsoft.Json

https://www.newtonsoft.com/json

• Scriban

https://github.com/scriban/scriban

Thank you to the developers of these softwares.

mailto:sales@selectec.com
mailto:support@selectec.com

